Haem and nitric oxide: synergism in the modulation of the endothelial haem oxygenase-1 pathway.
نویسندگان
چکیده
NO potently up-regulates vascular haem oxygenase-1 (HO-1), an inducible defensive protein that degrades haem to CO, iron and the antioxidant bilirubin. Since several pathological states are characterized by increased NO production and liberation of haem from haem-containing proteins, we examined how NO influences HO-1 induction mediated by haemin. Aortic endothelial cells treated with S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP) or diethylenetriamine-NONOate (DETA/NO) and haemin exhibited higher levels of haem oxygenase activity compared with cells exposed to NO donors or haemin alone. This was accompanied by a marked increase in bilirubin production and, notably, by a strong magnification of cellular haem uptake. A role for haem metabolites in modulating HO-1 expression by NO was assessed by exposing cells to SNAP, SNP or DETA/NO in medium derived from cells treated with haemin, which contained increased bilirubin levels. This treatment considerably potentiated HO-1 expression and haem oxygenase activity mediated by NO and the use of a haem oxygenase inhibitor abolished this effect. Both iron liberated during haem breakdown and the formation of nitroxyl anion from NO appeared to partially contribute to the amplifying phenomenon; in addition, medium from haemin-treated cells significantly augmented the release of NO by NO donors. Thus we have identified novel mechanisms related to the induction of HO-1 by NO indicating that the signalling actions of NO vary significantly in the presence of haem and haem metabolites, ultimately increasing the defensive abilities of the endothelium to counteract oxidative and nitrosative stress.
منابع مشابه
Nitric oxide synthase is downregulated, while haem oxygenase is increased, in patients with septic shock.
BACKGROUND The vasodilatation characteristic of human septic shock is conventionally attributed to increased nitric oxide production, primarily by extrapolation of animal and human in vitro studies. There are no conclusive studies of human disease, and the cellular source of nitric oxide in human sepsis is not known. Haem oxygenase is upregulated by oxidative stress, but little is known about h...
متن کاملRegulation of Haem Oxygenase-1 by Nitrosative Stress in Cardiac Cells
The reactive nitrogen species (RNS) nitric oxide (NO), nitroxyl anion (N0‘) and \ nitrosonium cation (NO+), modulate a myriad of biological processes. The microsomal haem oxygenases (HO-1, HO-2 and HO-3) oxidatively catabolise haem to bilirubin, carbon monoxide (CO) and ferrous iron (Fe2+). Sensitivity of the inducible isoform (HO-1) to a variety of inducers has identified HO-1 as an effective ...
متن کاملNitroarginine and tetrahydrobiopterin binding to the haem domain of neuronal nitric oxide synthase using a scintillation proximity assay.
Nitric oxide synthases (NOS) have a bidomain structure comprised of an N-terminal oxygenase domain and a C-terminal reductase domain. The oxygenase domain binds haem, (6R)-5,6,7,8-tetrahydro-l-biopterin (tetrahydrobiopterin) and arginine, is the site where nitric oxide synthesis takes place and contains determinants for dimeric interactions. A novel scintillation proximity assay has been establ...
متن کاملHaem oxygenase augments porcine granulosa cell apoptosis in vitro.
Haem oxygenases produce carbon monoxide, which, like nitric oxide, is a gaseous messenger molecule that is one of several important survival factors in ovarian follicles. However, little is known about the expression and possible functions of these enzymes in granulosa cells. The purpose of this study was to investigate the expression and possible role of haem oxygenases in porcine granulosa ce...
متن کاملKinetics of CO binding to the haem domain of murine inducible nitric oxide synthase: differential effects of haem domain ligands.
The binding of CO to the murine inducible nitric oxide synthase (iNOS) oxygenase domain has been studied by laser flash photolysis. The effect of the (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)) cofactor L-arginine and several Type I L-arginine analogues/ligands on the rates of CO rebinding has been evaluated. The presence of BH(4) in the iNOS active site has little effect on the rebinding of pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 372 Pt 2 شماره
صفحات -
تاریخ انتشار 2003